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We study Kuramoto oscillators, driven by one pacemaker, on d-dimensional regular topologies with nearest
neighbor interactions. We derive the analytical expressions for the common frequency in the case of phase-
locked motion and for the critical frequency of the pacemaker, placed at an arbitrary position in the lattice, so
that above the critical frequency no phase-locked motion is possible. We show that the mere change in
topology from an open chain to a ring induces synchronization for a certain range of pacemaker frequencies
and couplings, while keeping the other parameters fixed. Moreover, we demonstrate numerically that the
critical frequency of the pacemaker decreases as a power of the linear size of the lattice with an exponent equal
to the dimension of the system. This leads in particular to the conclusion that for infinite-dimensional topolo-
gies the critical frequency for having entrainment decreases exponentially with increasing size of the system,
or, more generally, with increasing depth of the network, that is, the average distance of the oscillators from the
pacemaker.
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I. INTRODUCTION

Synchronization is a ubiquitous phenomenon, found in a
variety of natural systems like fireflies �1�, chirping crickets
�2�, and neural systems, but it is also utilized for artificial
systems of information science in order to enable a well-
coordinated behavior in time �3�. As an important special
case, the coordinated behavior refers to similar or even iden-
tical units like oscillators that are individually characterized
by their phases and amplitudes. A further reduction in the
description was proposed by Kuramoto for an ensemble of
oscillators �4�, after Winfree had started with a first model of
coupled oscillators �5�. Within a perturbative approach Kura-
moto showed that for any system of weakly coupled and
nearly identical limit-cycle oscillators, the long-term dynam-
ics is described by differential equations just for the phases
�not for the amplitudes� with mutual interactions, depending
on the phase differences in a bounded form. It is this model,
later named after him, that nowadays plays the role of a
paradigm for weakly and continuously interacting oscillators.
In a large number of succeeding publications the original
Kuramoto model was generalized in various directions; for a
recent review see �6�. In particular the natural frequencies
were specialized in such a way that one oscillator plays the
role of a pacemaker with frequency higher than the natural
frequencies of all other oscillators �7,8�. Pacemakers play an
important role for the formation of patterns in Belousov-
Zhabotinsky system �9�. Special families of wave solutions
of the phases arise as a consequence of dynamically created
pacemakers �4,10�. Moreover pacemakers are important for
the functioning of the heart �5� and for the collective behav-
ior of Dictyostelium discoideum �11�, as well as for large-
scale ecosystems �12�. In �13� it is shown that a single peri-
odic pendulum oscillator can entrain or at least drastically

influence the dynamics of all chaotic pendula on two-
dimensional lattices. Furthermore in �8� the role of pacemak-
ers on complex topologies was analyzed in order to under-
stand the functioning of the neural network at the basis of the
circadian rhythm in mammals.

In this paper we consider a system of Kuramoto oscilla-
tors, coupled with their nearest neighbors on various regular
lattice topologies, and driven by a pacemaker, placed at an
arbitrary site of the lattice �Sec. II�. In particular, we analyti-
cally derive the common frequency of phase-locked motion
in case of generic networks �in particular for d-dimensional
regular lattices with open or periodic boundaries� in Sec. III.
Locked phases will be also called phase entrainment
throughout this paper. We also analytically derive the upper
bound on the absolute value of the ratio of the pacemaker’s
frequency to the coupling strength in case of one-
dimensional regular lattices �Sec. IV�. In Sec. V we consider
higher-dimensional lattices and extend the results obtained
for d=1 to any dimension d�2 of the lattice. We find that
the range of pacemaker frequencies for which one obtains
synchronization, the so-called entrainment window, de-
creases as an inverse power of the linear size N of the lattice
with an exponent given by the dimension d of the lattice.
This leads to the conclusion that the entrainment window of
an infinite-dimensional network decreases exponentially with
increasing linear size N if the pacemaker is asymmetrically
coupled to the other oscillators. This conclusion is supported
by our analysis of coupled oscillators on a Cayley tree, a
topology that amounts to an infinite-dimensional regular lat-
tice. These results confirm the results recently obtained by
Kori and Mikhailov �8� for random network topologies. For
random topologies the entrainment window decays exponen-
tially with increasing so-called depth of the network, that is,
the average distance of all other oscillators from the pace-
maker. For our regular topologies, the linear size of the net-
works for hypercubic lattices and the radius of the Cayley
tree are proportional to the network depth.
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II. THE MODEL

The system is defined on a regular network. To each node
i, i=0, . . . ,N, we assign a limit-cycle oscillator, characterized
by its phase �i that follows the dynamics

�̇i = � + �i,s�� + �1 + �i,s��
K

ki
�

j

Aj,isin�� j − �i� . �1�

A is the adjacency matrix of the system �Ai,j =Aj,i=1 if the
nodes i and j are connected and Ai,j =0 otherwise�; it reflects
the underlying topology of the network. Here only nearest
neighbors are coupled. Moreover, ki=� jAj,i is the degree of
the ith node; it gives the total number of connections of this
node in the network. �i,j denotes the Kronecker delta ��i,j
=1 if i= j and �i,j =0 if i� j �. The oscillator at position s
represents the pacemaker. Its natural frequency differs by ��
with respect to the natural frequency � of all other oscilla-
tors. Without loss of generality we set �=0, because system
�1� is invariant under the transformation �i→�i+�t " i.
Moreover, the interaction of the pacemaker with the other
oscillators can be linearly tuned by the parameter −1��
�0. For �=0 the pacemaker is on the same footing as the
other oscillators. For �=−1 its interaction is asymmetric in
the sense that the pacemaker influences the other oscillators,
but not vice versa �the pacemaker acts like an external force�.
In natural systems both extreme cases as well as intermediate
couplings can be realized. The constant K�0 parametrizes
the coupling strength. The phases of the ith and jth oscilla-
tors interact via the sine function of their difference, as origi-
nally proposed by Kuramoto.

III. PHASE-LOCKED MOTION

We consider the conditions for having phase-locked mo-
tion, in which the phase differences between any pair of
oscillators remain constant over time, after an initial short
transient time. First we calculate the frequency 	 in common
to all oscillators in the phase-locked state. Imposing the
phase-locked condition �̇i�	 " i=0, . . . ,N to system �1�
and using the fact that the sine is an odd function �see Ap-
pendix A for details�, we obtain

	 = ��
ks

�1 + ���
i�s

ki + ks

. �2�

As long as 	 depends on the degree ks we see that the com-
mon frequency 	 increases with the degree of the pace-
maker. On the other hand, when the network has a homoge-
neous degree of connections, ki�k " i=0, . . . ,N, Eq. �2�
takes the form

	 =
��

�1 + ��N + 1
. �3�

It should be noticed that in this case the common frequency
does not depend on the common degree k of the network.

In terms of the original parametrization of the model �1�,
the common frequency after synchronization is 	+�. For
the derivation of Eqs. �2� and �3� we made use only of the

odd parity of the coupling function. The former results are
still valid for any other odd coupling function f�� j −� j�
which is 2
 periodic and bounded.

IV. ONE-DIMENSIONAL LATTICE

A. Linear chain

Let us consider first the case of N+1 Kuramoto oscillators
coupled along a chain �Fig. 1� with free boundary conditions
at the positions 0 and N �ki=1 if i=0 or i=N, ki=2 other-
wise�, the pacemaker located at position s , 0�s�N. In this
case it is convenient to introduce the phase lag between near-
est neighbors �i=�i−�i−1. Consider first the pacemaker
placed at position 0�s�N. We start with the nearest oscil-
lators to the right of the pacemaker, placed at position i=s
+1,

	 = K/2�sin�− �s+1� + sin��s+2��

Þsin��s+2� = 2	/K + sin��s+1� .

Moving again to the right, the equation of the �s+2�th oscil-
lator reads

	 = K/2�sin�− �s+2� + sin��s+3��Þsin��s+3�

= 2	/K + sin��s+2�Þsin��s+3�

= 4	/K + sin��s+1� .

Iteratively, we can write for each 1� j�N−s

sin��s+j� = 2�j − 1�
	

K
+ sin��s+1� . �4�

In particular when j=N−s we have

sin��N� = 2�N − s − 1�
	

K
+ sin��s+1� ,

but also at the boundary

	 = Ksin�− �N� .

From the last two equations we can simply determine the
value of sin��s+1� as a function of s, N, and 	. Substituting
this value into Eq. �4�, we obtain

sin��s+j� = 2�j − 1�
	

K
+ �2s − 2N + 1�

	

K
. �5�

When 	�0 �	�0�, Eq. �5� is always negative �positive�
and has its minimum �maximum� value for j=1. This means
that when the pacemaker succeeds in “convincing” its
nearest neighbor to the right to adopt its frequency, all the
others to the right do the same. Now, the absolute value of
the critical threshold can be calculated by using only the fact

FIG. 1. One-dimensional lattice with N+1 sites labeled by their
coordinates.
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that the sine function is bounded ��sin��� � �1� and using the
expression for 	 as a function of � and N, as it is derived in
the Appendix A in Eq. �A2�:

R���

K
�

C
=

�1 + ��N − �

2N − 2s − 1
. �6�

Equation �6� yields the bound for oscillators to the right �R�
of s to approach a phase-locked state. Following the same
procedure, but moving to the left of the pacemaker, we find

L���

K
�

C
=

�1 + ��N − �

2s − 1
�7�

as bound for oscillators to the left �L� of the pacemaker to
synchronize in a phase-locked motion. Since we are inter-
ested in a state with all oscillators of the chain being phase
entrained, we need the stronger condition given by

���

K
�

C
= min	R���

K
�

C
,

L���

K
�

C

 . �8�

For the pacemaker placed at the boundaries s=0 or N, using
Eqs. �2� and �A2�, we obtain

���

K
�

C
=

�1 + ���2N − 1� + 1

2N − 1
. �9�

B. Ring topology

If we close the chain of N+1 oscillators to a ring, ki
�2 " i, the derivation of the upper bound on the pacemak-
er’s frequency ��� /K�C proceeds in analogy to that of Eq.
�9�. Using Eq. �3�, the final result is then given as

���

K
�

C
=

1

N
+ �1 + �� . �10�

In all former cases, for N→
, the critical threshold ��� /K�C
goes to �1+�� �or values proportional to �1+���. Differently,
the common frequency 	 goes to � for 0���−1 and
N→
, while 	 goes to �+�� for �=−1 and N→
. There-
fore the symmetric coupling of the pacemaker to the rest of
the system favors the synchronizability of the system, while
it can no longer synchronize for a completely asymmetric
coupling of the pacemaker ��=−1�. This is plausible as it
must be easier for N oscillators to convince one pacemaker
to follow them �case ��−1� than the opposite case, in which
the pacemaker must convince N oscillators to follow it �case
�=−1�. For increasing system size, the latter case becomes
impossible, while the former is still possible.

C. Topological switch to synchronization

The numerical results of this paper are obtained by inte-
grating the set of Eqs. �1� with the Runge-Kutta method of
fourth order �dt=0.1�. The numerical value of the critical
threshold ��� /K�C is evaluated with an accuracy of
5�10−5. As one knows from �4�, in case of regular topolo-
gies, stable solutions with different winding numbers are

possible. To avoid different winding numbers, we always
choose homogeneous initial conditions �also the distribution
of phases would be different, in particular, in the synchro-
nized state�.

We summarize the results obtained so far in Fig. 2. The
analytical results for ��� /K�C are represented by lines for the
open chain �dotted line from Eq. �6� and dashed line from
Eq. �7�� and for the ring �full line from Eq. �10��, and by
crosses �Eq. �9�� in the case of an open chain with the pace-
maker at the boundaries, while the circles �open chain� and
squares �ring� represent numerical data that reproduce the
analytical predictions within the numerical accuracy. All re-
sults are obtained for N=20 and �=0; they are plotted as a
function of the pacemaker’s position s which matters only in
the case of the open chain. The horizontal line obviously
refers to the ring; the two branches �left and right�, obtained
for the chain, cross this line when the pacemaker is placed at
s=10 in the middle of the chain. When the pacemaker is
located at the boundaries s=0 and 20, we obtain two isolated
data points close to the horizontal line.

Let us imagine that for given N and � the absolute value
of the pacemaker’s frequency ���� and the coupling K are
specified out of range, such that the ratio is too large to allow
for phase-locked motion on a chain, but small enough to
allow the phase entrainment on a ring. It is then the mere
closure of the open chain to a ring that leads from nonsyn-
chronized to synchronized oscillators with phase-locked mo-
tion. Therefore, for a whole range of ratios ��� /K�, no fine
tuning is needed to switch to a synchronized state, but just a
simple change in topology, the closure of a chain to a ring.
Because this closure may be much more feasible in real sys-
tems than a fine tuning of parameters to achieve synchroni-
zation, we believe that this mechanism is realized in natural
systems and should be utilized in artificial ones. In our nu-
merical integration we simulated such a switch, and plot the
phase portrait in Fig. 3. The phases �i as a function of time
are always projected to the interval �0,2
�: we use a thick
black line for the phase of the pacemaker and thin dark gray
lines for the other oscillators. In this concrete numerical
simulation with T dt=4000 integration steps altogether, we

FIG. 2. Critical threshold ��� /K�C as function of the position s
of the pacemaker on a one-dimensional lattice. For further details
see the text.

ENTRAINMENT OF COUPLED OSCILLATORS ON¼ PHYSICAL REVIEW E 73, 036218 �2006�

036218-3



analyzed a one-dimensional lattice of Kuramoto oscillators
with N=6, s=2, �� /K=1, and �=0. In the time interval
from 0 to “ON” �T /3� we see a phase evolution with differ-
ent slopes and varying with time. Moreover, the pacemaker
and the left part of the system �oscillators i=0,1� have larger
frequencies than the right part of the system �oscillators i
=3,4 ,5 ,6�. At the instant “ON” we close the chain, passing
to a ring topology; the system almost instantaneously reaches
a phase-locked motion �all phases moving with the same and
constant frequency�. At time “OFF” �2T /3� we open the
ring; again, the system then behaves similarly to the first
phase, i.e., for t� �0,ON�.Furthermore it should be noticed
from Fig. 2 that it is also favorable to put the pacemaker at
the boundaries of an open chain to facilitate synchronization.
For d=1 the pacemaker then has to entrain only one rather
than two nearest neighbors so that the range of allowed fre-
quencies ���� increases.

V. HIGHER DIMENSIONS

All of our results obtained so far extend qualitatively to
higher dimensions d, when system �1� is placed on a hyper-
cubic lattice with �Nj +1� oscillators in each direction j, so
that we have an ensemble of � j=1

d �Nj +1� Kuramoto oscilla-
tors, where the ith oscillator’s position is labeled by a

d-dimensional vector i�, with 0� ij �Nj " j=1, . . . ,d. If the
condition for having a phase-locked motion is satisfied, the
system of oscillators reaches a common frequency still given
by Eq. �2�. This condition now is satisfied for ��� /K �
� ��� /K�C, the critical ratio for the pacemaker’s frequency
at position s�= �s1 , . . . ,sd� �see Fig. 4�. In the simplest case
when the lattice has �N+1� sites in each direction, we can
qualitatively extend all the previous results, obtained so far
for d=1, to any dimension d�2. For example, the “closure”
of the open boundaries of the lattice to a torus in d dimen-
sions favors synchronization of the system. We checked this
numerically for d=2 and N=10 �Fig. 4�. Except for the cen-
tral node at s�= �5,5�, the critical threshold in case of open
boundary conditions always lies below that for periodic
boundary conditions. Moreover, it is natural to assume that
the former results, obtained for one-dimensional lattices, in
the case of periodic boundary conditions extend to
d-dimensional lattices by replacing N in Eq. �10� by
�N+1�d−1

���

K
�

C
=

1

�N + 1�d − 1
+ �1 + �� . �11�

For �=−1 and fixed K, the entrainment window ��c de-
creases exponentially with increasing dimension d of the lat-
tice and as a power of the linear size of the lattice with
exponent d. This conjecture is supported by the numerical
results as documented in Fig. 5. For this reason we expect
that for infinite-dimensional systems �d→ 
 � the entrain-
ment window decreases exponentially with increasing linear
size of the system if the pacemaker is asymmetrically
coupled with �=−1.

In order to verify this conjecture, we study a system of
limit-cycle oscillators placed on a Cayley tree �Fig. 6�. Cay-
ley trees have z branches to nearest neighbors at each node,
apart from nodes in the outermost shell, where the number of
nearest neighbors is z−1. Cayley trees are infinite-
dimensional objects in the sense that the surface of the sys-
tem �i.e., the number of nodes in the outermost shell at dis-
tance R from the center� is proportional to the volume of the
system �i.e., the total number of nodes in the tree�. The set of
evolution equations is still given by Eq. �1�, with the adja-
cency matrix A specialized to the underlying Cayley tree

FIG. 3. Phase portrait of a system of Kuramoto oscillators on a
one-dimensional lattice. This figure shows how it is possible to
switch “ON” and “OFF” synchronization via a simple topological
change of the system, passing from a linear chain to a ring, and vice
versa. A more detailed description is given in the text.

FIG. 4. Same as Fig. 2, but in d=2 dimensions. The linear size
of the system is N=10. The arrow indicates the value of the critical
threshold for periodic boundary conditions.

FIG. 5. Entrainment window for higher-dimensional lattices. We
plot the critical threshold ��� /K�C− �1+�� which is independent of
� as is seen from Eq. �11�. The main plot shows the dependence of
the entrainment window on the dimension d, while the inset shows
its dependence on the linear size N of the lattice. Numerical results
are plotted as symbols. They fit perfectly with our predictions ac-
cording to Eq. �11�.

F. RADICCHI AND H. MEYER-ORTMANNS PHYSICAL REVIEW E 73, 036218 �2006�

036218-4



topology. For simplicity, we consider only the case of the
pacemaker placed at the center of the tree �s=0�.

When the number of branches per nodes z is 2, the Cayley
tree becomes a linear chain, with N=2R and the pacemaker
placed at position s=N /2=R. Obviously for z=2 we find the
same results as given in the previous section �see Appendix
B�.

The infinite dimensionality of the tree shows up for
z�2. We obtain

	 = ��
z − 2

z − 2 + �1 + ���2�z − 1�R − z�
�12�

as the common frequency for the phase-locked motion and

���

K
�

C
=

z − 2

2�z − 1�R − z
+ �1 + �� �13�

as critical ratio for obtaining the phase-locked motion. Both
Eqs. �12� and �13� are valid for R�2. In particular Eq. �13�
tell us that for �=−1 the entrainment window decreases ex-
ponentially with increasing radius R of the Cayley tree �see
Fig. 7�. For large z�2 it is easily seen that the radius R
becomes proportional to the depth D of the network �in the
limit z�2 one finds D�R�. These results nicely confirm
those recently obtained by Kori and Mikhailov �8�, who
found that in infinite-dimensional systems such as random
networks and small-world networks with a high number of
rewired edges, the entrainment window decreases exponen-
tially with increasing depth of the network. In order to con-
nect their results to ours, we note that not only the radius R
of the Cayley tree but also the linear size N of the hypercubic
lattices is proportional to the depth of these regular networks.

VI. SUMMARY AND CONCLUSIONS

Entrainment of Kuramoto oscillators coupled on regular
lattices via a pacemaker is possible for large system sizes

�N→ 
 � only in the case of symmetric ��=0� couplings of
the pacemaker. As the pacemaker coupling becomes asym-
metric �−1���0�, synchronization becomes more and
more difficult, and impossible for large system sizes and �
=−1. However, we are not only interested in the “thermody-
namic” limit. For finite N and −1���0, we find that for a
whole range of ratios ��� /K� it is possible to induce syn-
chronization by a mere closure of a chain to a ring. The
sensitive dependence of synchronization on the topology in a
certain range of parameters may be exploited in artificial
networks and is—very likely—already utilized in natural
systems, in which a switch to a synchronized state should be
easily feasible �although we are currently not aware of a
concrete example from biological systems�. If the pacemaker
is coupled symmetrically to the other oscillators ��=0�, the
entrainment window stays finite in the large-N limit, but the
common frequency approaches zero for N→
. In the other
extreme case, if the pacemaker is coupled asymmetrically to
the rest of the system ��=−1�, our main result is that the
entrainment window decreases as a power of the depth of the
network with the dimension d in the exponent. Extrapolating
this behavior to arbitrary dimension d, we see that one of the
reasons for the exponentially fast “closure” of the entrain-
ment window in complex network topologies �8� is their ef-
fective infinite dimensionality.

APPENDIX A: COMMON FREQUENCY

Imposing the phase-locked condition, setting �=0, and
dividing by K /ki " i=0, . . . ,N, system �1� takes the form

ki

K
	 = �i,s

ki

K
�� + �1 + �i,s��	i, �A1�

where

	i ª �
j�i

sin�� j − �i� .

From the odd parity of the sine function it follows that

FIG. 6. Cayley tree with z=3 branches and radius R=5.

FIG. 7. Entrainment window for Cayley trees as a function of
the radius R. Numerical results �full dots and squares� refer to z
=3 and 4. The full lines correspond to plots of ��� /K�C− �1+��, as
defined in Eq. �13�, for different coordination numbers z; from top
to bottom z=3, 4, 5, 6, 10, and 100, respectively.
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�
i

	i = 0 and �
i�g

	i = − 	g.

Summing �A1� over all i except i=s we obtain

�
i�s

	
ki

K
= �

i�s

�i,s
ki��

K
+ �

i�s

�1 + �i,s��	i

Þ
	

K
�
i�s

ki = − 	s

while summing �A1� over all i except i= j, where j�s, we
obtain

�
i�j

	
ki

K
= �

i�j

�i,s
ki��

K
+ �

i�j

�1 + �i,s��	i

Þ
	

K
�
i�j

ki =
ks��

K
− 	 j + �	s

Þ
	

K
�
j�s

�
i�j

ki = �
j�s

ks��

K
− �

j�s

	 j + �
j�s

�	s

Þ
	

K
�
j�s

�
i�j

ki =
Nks��

K
+ �1 + �N�	s.

It should be noticed that

�
j�s

�
i�j

ki = Nks + �N − 1��
i�s

ki,

so that we can write

	��1 + ���
i�s

ki + ks
 = ks�� ,

from which Eq. �2� is implied.
In the case of a one-dimensional lattice with open bound-

ary conditions, we have k0=1=kN and kj =2 " j�0,N, so
that

�
i�s

ki = �2N − 1 if s = 0 or s = N ,

2�N − 1� otherwise.

The common frequency of Eq. �2� can be written as

	 = ���
1

�1 + ���2N − 1� + 1
if s = 0 or s = N ,

1

�1 + ���N − 1� + 1
otherwise.

�A2�

APPENDIX B: COMMON FREQUENCY AND CRITICAL
THRESHOLD FOR CAYLEY TREES

Consider a node in the outermost shell, i.e., at distance R
from the pacemaker, reached along the path s�R
= �s1 ,s2 ,s3 , . . . ,sR−1 ,sR� from the central node. Here s1

=1 , . . . ,z, while si=1, . . . ,z−1" i=2, . . . ,R �see Fig. 6� la-

bel the choice of branch along the path. For this node we can
write Eqs. �1� as

�̇s�R
= 	 = Ksin��s�R−1

− �s�R
� Þ sin��s�R−1

− �s�R
�

=
	

K
,

from which we can see that all oscillators at distance R,
independently of the path along which they are reached from
the center, satisfy the same equation.

Proceeding in an analogous way as before, we find for the
shell R−1

�̇s�R−1
= 	 =

K

z 	 �
sR=1

z−1

sin��s�R
− �s�R−1

�+ sin��s�R−2
− �s�R−1

�

=

K

z
	− �z − 1�

	

K
+ sin��s�R−2

− �s�R−1
�


Þ sin��s�R−2
− �s�R−1

� =
	

K
�z + �z − 1�� .

Furthermore, for the shell R−2 we obtain

�̇s�R−2
= 	

=
K

z 	 �
sR−1=1

z−1

sin��s�R−1
− �s�R−2

�+ sin��s�R−3
− �s�R−2

�

=

K

z
	− �z − 1�

	

K
�z + �z − 1�� + sin��s�R−3

− �s�R−2
�


Þ sin��s�R−3
− �s�R−2

�

=
	

K
�z + z�z − 1� + �z − 1�2�

until we arrive for R− �t+1� at

sin��s�R−�t+1�
− �s�R−t

� =
	

K
�z�

q=0

t−1

�z − 1�q + �z − 1�t
 .

For t=R−1, we have

sin��s�0
− �s�1

� =
	

K
�z�

q=0

R−2

�z − 1�q + �z − 1�R−1
 ,

but also, at the center of the Cayley tree,

	 = �̇s�0
= �� + �1 + ��

K

z
�
s1=1

z

sin��s�1
− �s�0

�

= �� − �1 + ��	�z�
q=0

R−2

�z − 1�q + �z − 1�R−1

from which
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	 = ��	1 + �1 + ���z�
q=0

R−2

�z − 1�q + �z − 1�R−1

−1

.

�B1�

For z=2 the Cayley tree reduces to a linear chain with
N+1 oscillators �N=2R�, open boundary conditions, and the
pacemaker placed at position s=N /2. The common fre-
quency given in Eq. �B1� becomes the same as in Eq. �A2�.

For z�2 we can rewrite the truncated geometric series as

�
q=0

R−2

�z − 1�q =
�z − 1�R−1 − 1

z − 2
�B2�

and obtain after some algebra Eq. �12�.
As we have seen, all oscillators at the same distance r

from the pacemaker satisfy the same equation. We can write

sin��r − �r−1� = −
	

K
�z �

q=0

R−r−1

�z − 1�q + �z − 1�R−r
 , �B3�

suppressing the path that was followed to reach the node. It
is easily seen that when 	�0 �	�0�, Eq. �B3� is always
negative �positive�, monotone and increasing �decreasing�,
and takes its minimum �maximum� value for r=1. Imposing
the bound of the sine function ��sin��� � �1� to Eq. �B3�,
with r=1, and inserting Eq. �B1� we obtain

���

K
�

C
=

1

z�
q=0

R−2

�z − 1�q + �z − 1�R−1

+ �1 + �� .

For z=2 again we obtain Eqs. �6� and �7� with s=N /2. For
z�2 we can again use the truncated geometric series of Eq.
�B2� and obtain Eq. �13�.
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